49 research outputs found

    Where does the irrigated water in the Tarim Basin go? A hydrological analysis of water budgets and atmospheric transport

    Get PDF
    Irrigated agriculture plays a crucial role in the local economic and social development of the Tarim Basin, but its sustainability is threatened by water scarcity due to the arid environment. In this study, we investigate the impact of irrigation on the atmospheric hydrological cycle in the region using the Weather Research and Forecast (WRF) model. We conduct simulations for a three-month period under two scenarios: present-day and future warming. Our results show that, in the present-day scenario, 90.5% of irrigated water is transported via atmospheric hydrological processes, with precipitation and water vapor transport being the dominant components. However, in the future warming scenario, more atmospheric water (45.2%) will leave the area due to weakened wind regimes, resulting in significant water loss. Furthermore, our analysis using the HYbrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) indicates that irrigation contributes to extreme rainfall events, and the southwestern Tarim Basin is a primary destination for irrigated water. Our findings highlight the urgency of addressing the sustainability of irrigated agriculture and local water resources in the face of impending global warming

    Modeling the impacts of urbanization and open water surface on heavy convective rainfall: a case study over the emerging Xiong'an city, China

    Get PDF
    In this study, we examine the impacts of urbanization and open water surface on heavy convective rainfall based on numerical modeling experiments using the Weather Research and Forecasting (WRF) model. We focus on a severe storm event over the emerging Xiong'an city in northern China. The storm event consists of two episodes, and features intense moisture transport and strong large‐scale forcing. A set of WRF simulations were implemented to examine the sensitivity of spatiotemporal rainfall variability in and around the urban area to different land use scenarios. Modeling results highlight contrasting roles of open water and urban surface in dictating space‐time organizations of convective rainfall under strong large‐scale forcing. Dynamic perturbation to atmospheric forcing dominates the impacts of open water and urban surface on spatial rainfall distribution during the second storm episode, while urban surface promotes early initiation of convection during the first storm episode through enhanced buoyant energy. Open water surface contributes to convective inhibition through evaporative cooling but can enhance moist convection when the impact of urban surface is also considered. The synergistic effect of open water and urban surface leads to rainfall enhancement both over and in the downwind urban area. Changes in rainfall accumulation with different spatial extents of urban coverage highlight strong dependence of urban‐induced rainfall anomalies on urbanization stages. Our results provide improved understandings on hydrometeorological impacts due to emerging cities in complex physiographic settings, and emphasize the importance of atmospheric forcing in urban rainfall modification studies

    Spatial scale effect of surface routing and its parameter upscaling for urban flood simulation using a grid‐based model

    Get PDF
    Urban catchments are characterized by a wide variety of complex juxtapositions and surface compositions that are linked to multiple overland flow paths. Their extremely high spatial heterogeneity leads to great sensitivity of hydrologic simulation to the scale variation of calculation units. Although extensive efforts have been made for investigating the scale effects and indicate its significance, less is understood of how routing features vary with spatial scales and further how the variation of routing features influences the hydrological response. In this paper, a grid-based distributed urban hydrological model is applied to study spatial scale effects ranging from 10 to 250 m. Two parameters are proposed to quantitatively depict the routing features of overland flow specified for impervious and pervious areas. The results show that routing features are quite sensitive to spatial resolution. Large differences among simulations exist in the infiltration amounts attributed to the combined effects of the two routing parameters, which leads to opposite effects for both total flow volume and peak flow for various rainfall events. The relationship of the key model parameters at different spatial resolutions can be explicitly expressed by corresponding routing features. With this relationship, parameters transfer among different spatial scales can be realized to obtain consistent simulation results. This study further revealed the quantitative relationship between spatial scales, routing features and the hydrologic processes, and enabled accurate and efficient simulations required by real time flooding forecasting and land-atmosphere coupling, while fully taking the advantages of detailed surface information. Plain Language Summary Given the inherent complex underlying surface compositions and overland flow paths in urban areas, underlying high spatial resolution surface data eventually become necessary. Unfortunately, high resolution modelling in urban catchment is still challenging in terms of computational restricts, proper setting up of parameters etc., due to the high spatial heterogeneity. Practical simulation requirements often limit the use of high resolution models, as in the case of real time prediction of urban flooding, the coupling of land-atmosphere processes. Therefore, it is necessary to investigate the scale effects and its mechanism, and then to explore an accommodation approach to enable precise flooding prediction with a coarse model. For grid-based and distributed hydrologic models, the mosaic method can basically eliminate the scale effects on the runoff generation process. However, the scale effects on overland flow routing remain insufficiently understood, and to help understand the scale effects, simulations were performed under five different resolutions, ranging from 10 m to 250 m, for various rainfall events. Two physical parameters are introduced to quantify the scale effects on routing features. Three variables are concurrently calculated to assess the effects on modeling outputs. The results indicate that routing features are sensitive to changes in spatial resolution, which results in opposite effects on simulation results under different rainfall conditions. In conclusion, an accommodation approach is proposed based on the affecting mechanism

    Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries

    Get PDF
    Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc.), which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs), such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1). Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions

    Bayesian network based procedure for regional drought monitoring:The Seasonally Combinative Regional Drought Indicator

    Get PDF
    Drought is a complex natural hazard. It occurs due to a prolonged period of deficient in rainfall amount in a certain region. Unlike other natural hazards, drought hazard has a recurrent occurrence. Therefore, comprehensive drought monitoring is essential for regional climate control and water management authorities. In this paper, we have proposed a new drought indicator: the Seasonally Combinative Regional Drought Indicator (SCRDI). The SCRDI integrates Bayesian networking theory with Standardized Precipitation Temperature Index (SPTI) at varying gauge stations in various month/seasons. Application of SCRDI is based on five gauging stations of Northern Area of Pakistan. We have found that the proposed indicator accounts the effect of climate variation within a specified territory, accurately characterizes drought by capturing seasonal dependencies in geospatial variation scenario, and reduces the large/complex data for future drought monitoring. In summary, the proposed indicator can be used for comprehensive characterization and assessment of drought at a certain region

    Plant Food Delphinidin-3-Glucoside Significantly Inhibits Platelet Activation and Thrombosis: Novel Protective Roles against Cardiovascular Diseases

    Get PDF
    Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs

    Recent Advances in Adaptive Catchment Management and Reservoir Operation

    No full text
    This editorial introduces the latest research advances in the special issue on catchment management and reservoir operations. River catchments and reservoirs play a central role in water security, community wellbeing and social-economic prosperity, but their operators and managers are under increasing pressures to meet the challenges from population growth, economic activities and changing climates in many parts of the world. This challenge is tackled from various aspects in the 27 papers included in this special issue. A synthesis of these papers is provided, focusing on four themes: reservoir dynamics and impacts, optimal reservoir operation, climate change impacts, and integrated modelling and management. The contributions are discussed in the broader context of the field and future research directions are identified to achieve sustainable and resilient catchment management

    Where does the irrigated water in the Tarim Basin go? A hydrological analysis of water budgets and atmospheric transport

    No full text
    Irrigated agriculture plays a crucial role in the local economic and social development of the Tarim Basin (TB), but its sustainability is threatened by water scarcity due to the arid environment. In this study, we investigate the impact of irrigation on the atmospheric hydrological cycle in the region using the weather research and forecast model. We conduct simulations for a three month period under two scenarios: present-day and future warming. Our results show that, in the present-day scenario, 90.5% of irrigated water is transported via atmospheric hydrological processes, with precipitation and water vapor transport being the dominant components. However, in the future warming scenario, more atmospheric water (45.2%) will leave the area due to weakened wind regimes, resulting in significant water loss. Furthermore, our analysis using the HYbrid Single Particle Lagrangian Integrated Trajectory model indicates that irrigation contributes to extreme rainfall events, and the southwestern TB is a primary destination for irrigated water. Our findings highlight the urgency of addressing the sustainability of irrigated agriculture and local water resources in the face of impending global warming

    Heating Impact of a Tropical Reservoir on Downstream Water Temperature: A Case Study of the Jinghong Dam on the Lancang River

    No full text
    Reservoirs change downstream thermal regimes by releasing water of different temperatures to that under natural conditions, which may then alter downstream biodiversity and ecological processes. The hydropower exploitation in the mainstream Lancang-Mekong River has triggered concern for its potential effects on downstream countries, especially the impact of the released cold water on local fishery production. However, it was observed recently that the annual water temperature downstream of the Jinghong Reservoir (near the Chinese border) has increased by 3.0 °C compared to its historical average (1997–2004). In this study, a three-dimensional (3D) model of the Jinghong Reservoir was established to simulate its hydro- and thermodynamics. Results show that: (1) the impoundment of the Jinghong Reservoir contributed about 1.3 °C to the increment of the water temperature; (2) the solar radiation played a much more important role in comparison with atmosphere-water heat exchange in changing water temperatures; and (3) the outflow rate also imposed a significant influence on the water temperature by regulating the residence time. After impoundment, the residence time increased from 3 days to 11 days, which means that the duration that the water body can absorb solar radiation has been prolonged. The results explain the heating mechanism of the Jinghong Reservoir brought to downstream water temperatures
    corecore